我国科技界与产业界至今对如何快速而健康地发展我国IC产业,特别是对如何发展CPU产业还没有达成共识。本文以研制龙芯CPU的策略考虑为基础,对发展我国的集成电路设计产业提出一些观点与看法,请教于全国同行,旨在抛砖引玉,希望对决策层尽快做出科学决策有所裨益。
一、跨越与跟踪
IC加工业是资金高度密集的产业,一条0.18微米生产线,一般要投资15亿美元以上,国外对先进IC加工设备出口中国仍有许多限制,因此,我国在芯片加工方面实现跨越式发展难度相当大。相对而言,芯片设计是智力密集型产业,虽然IC设计产业的收入目前只占整个IC产业10%左右,但营业额增长率高于制造业3倍以上。台湾IC设计业1998年、1999年的投资回报率分别为21.6%和39%,比IC制造业的回报率(4%或12.6%)高几倍。据麦卡锡公司预测,中国国内IC设计业2010年的收入可达100亿美元。我国从事芯片前端设计的人力资源丰富,许多研究所和大学都有不少从事系统和硬件设计的人才。芯片设计的知识产权和专利很多都体现在系统级设计上,尤其是当进入片上系统(Soc)设计时,系统级的创新更加重要。龙芯一号CPU物理设计的成功表明有系统级设计经验的人转入物理设计并不是一件高不可攀的事,入门并不难,只要有一股钻劲,经过几年的积累,我国一定会出现一批物理设计的高手。当然物理设计本身是一门高深的技术,微电子专业的人才是物理设计的主力。因此,我认为,中国实IC产业跨越发展的主要希望在芯片设计上。
在分析了计算所系统设计方面的技术储备与优势后,我们在龙芯一号设计开始时,提出了“高起点,一步到位”的要求。所谓高起点是指尽可能采用先进的制造工艺。我们第一次设计和流片生产CPU就跳过了0.35、0.25微米工艺,选用了目前代加工厂主流的0.18微米工艺。做出这种决策不是盲目地碰运气,而是通过与硅谷许多有经验的工程师深入调研分析流片成功的可能性后做出的,从某种意义上讲,这也是利用了“后发优势”,“借树开花”。所谓“一步到位”,当然不是指第一次设计就做出性能超过P4的CPU,而是针对当时国内有些单位还在启动研制386、486的形势,要求我们在微体系结构上有创新,用国际先进水平的体系结构实现64位浮点运算,尽可能实现技术上的跨越式进步,而不是从模仿20世纪80年代技术开始一步一步爬行,并且一开始就强调正向自主设计,不采取解剖别人芯片反向设计的路线。“一步到位”的另一层意思是不做供鉴定用的实验室样片,而是要确保万无一失,经得起产品检验,做成可批量生产的芯片。经过一年多努力,龙芯一号达到了预期目的。
我们真正期盼的跨越式进步的标志性产品是龙芯2号。我们在设计龙芯2号时,已分析了Intel P4、Sun SPARC、HP的Alpha、IBM Power4等多种主流芯片的微体系结构,要求龙芯2号的体系结构有自己明显的特色,以最有效的方法实现四发射,即一时钟周期可同时执行四条指令(P4实现了三发射),而且要为下一步研制超线程CPU和多处理机CPU打下基础。计算所与在美国参加过千万亿次计算机研制的高光荣教授共同成立了先进计算机联合实验室,重点研制多线程机制,争取实现几十个甚至几百个线程并行操作。这项技术各大公司还在研究之中,我们将争取以跨越的技术进入国际前列,在龙芯3号、龙芯4号中采用。
我们主张的跨越式发展还体现在我们对微处理器发展趋势的理解与判断上。国人对于CPU和操作系统有特殊的感情,把这两者称为信息技术的核心技术。实际上随着Interent普及与发展,人们心目中的P3、P4之类的CPU和Windows之类的操作系统的地位正在不断下降。在向科学院领导申请知识创新重大项目时,我曾说过,龙芯微处理器的目标不是传统的“CPU”,而是“DPU”,即Distributed Processor Unit。所谓中央处理器是针对过去的大型计算机取的名,随着网络存储和各式各样的通信与终端设备直接上网,微处理器将分布在各种设备中。以后计算机、通信设备(如智能化的路由器等)和信息家电的界限越来越模糊,新一代的微处理器和现在PC机上的CPU将会有很大区别,创新的空间很大。中国的芯片设计要跨越发展,可能要通过软件和算法的突破来弥补硬件加工的不足。系统设计人员在芯片设计产业中将扮演十分重要的角色。总之,我国的芯片产业不能再走PC产业走过的以组装为主的老路。如果只重视附加值很少的低端芯片或主要用别人的IP“组装”低端SoC芯片,前途不会太美好。
二、通用与专用
我国CPU的研制尚未真正开展起来,863计划集成电路重大专项的高性能CPU项目还处在软课题研究阶段,但关于重点支持所谓通用CPU还是嵌入式CPU的讨论已经进行多次,不幸的是谁要是讲想做通用CPU,马上就有人反驳:你想赶上Intel P4?这肯定不可能,还是先做点电表控制芯片、身份证卡吧。国外公司研制芯片只关心市场有没有需求,不会先浪费时间论证应该做通用还是嵌入式芯片。从各个芯片公司的网页上我们只会看到各种型号芯片的介绍,看不到他们将芯片分成通用和嵌入式。
从语文的角度上讲,“通用”的反义词是“专用”不是“嵌入式”。所谓嵌入式CPU是指安装在不是计算机的路由器、手机、电视机、汽车等设备上的CPU芯片,而装在PC机、笔记本电脑、工作站、服务器上的CPU一般称为通用CPU,因为它能执行各种各样的程序。嵌入式是CPU的一种应用,一般只要求运行某种确定的程序,很多场合的嵌入式应用都要求低功耗,特别是像手机、PDA这类手持移动设备,低功耗意味着充一次电可运行更长时间,因此,低功耗应用追求更高的MIPS/W(每瓦每秒百万指令),而不是MIPS数。好的嵌入式芯片,如IBM PowerPC750FX每瓦的MIPS数比Intel P4(2.4G)高10倍,但从芯片的指令系统和体系结构而言,所谓通用CPU和嵌入式CPU并没有本质区别。不论是通用CPU还是嵌入式CPU,只要是低档产品都容易做而高档产品都难做。要特别强调的是所谓嵌入式芯片五花八门,但大都采用通用的CPU核,如MIPS核、ARM核等,从这个意义上讲,通用CPU和嵌入式CPU技术上是完全相通的,不存在只能选其一的问题。
在集成电路的发展历史上,芯片产品在制造与使用的对立统一中发展,随着半导体产业的景气循环,总是沿着通用与专用循环往复不断进步。天同证券公司在网上发表了一篇“半导体产业行业研究报告”,对通用专用芯片交替发展做了一些分析,本文下面引用该文的分析结果。1959年仙童公司推出第一个硅平面晶体管商品,开始了芯片产品第一个通用循环周期。其后不久仙童公司又推出面向计算器、电视机的专用标准构件,标志着IC产品进入第一个专用循环周期。20世纪70年代Intel公司开发成功微处理器芯片,使IC产品上升到一个新的通用循环。20世纪80年代设计工具的发展推动了一个产品满足一个用户要求的专用集成电路(ASIC)的发展,使IC产品进入高一级的专用循环。20世纪90年代初,又发展出了可编程门阵列(FPGA),用户可进行软编程反复改变硬件功能,又进行新一轮的准通用循环。随着ASIC技术的积累,IC开始向片上系统(SoC)发展,SoC实质上是更高一级的专用系统。随着通用一专用模式的交替发展,硬件软件的界限开始模糊起来,IC设计进入了基于可重用知识产权(IP)库的设计阶段。
IC发展历史已表明,通用CPU是IC技术发展的源头。从几年前开始,最先进的IC制造工艺首先在通用CPU上使用(过去曾经是DRAM)。如果我们不敢碰通用CPU,就只能永远跟着别人走。在2000年计算所酝酿研制CPU时,我们曾反复讨论过是买MIPS或ARM CPU核,针对某个应用做点外围电路,还是自己做一个有自主知识产权的MIPS CPU核或类似ARM的CPU核。我们的结论是没有自己CPU核的芯片产业就如同没有CPU的PC产业一样,而研制通用CPU是形成有市场竞争力的CPU核的重要途径。因为一个好的CPU核必须经过多种应用的考验,单独为汽车控制等应用做一个较专用的CPU难以扩弃成较通用的CPU核。
从网络信息安全的角度出发,我国也需要有自己的通用服务器CPU。服务器相当于电网中的发电站,一旦服务器受到打击,将会造成大范围的网络瘫痪。服务器的用量少于终端(美国服务器的销售额约为PC机的1/3),但服务器CPU作为涉及国家政治、经济、信息安全的核心技术一定要掌握在自己手里。在龙芯CPU研制时,从硬件设计上采用了防止缓冲区溢出攻击的新技术,可以防止大多数黑客和病毒攻击(即使软件有漏洞也能防攻击),并申请了10项发明专利。龙芯一号流片成功后,曙光公司很快就推出了基于龙芯一号的龙腾服务器,尽管其性能只相当于四五年前的PC服务器,但其与众不同的高安全性对政府、金融、国防等部门用户会有吸引力。
通过以上分析,我们的结论是我们应重点发展量大而广的芯片设计,即较通用的嵌入式芯片,同时要重视高安全性的服务器CPU芯片设计。形成较通用的嵌入式CPU核的一条可行途径是从设计通用CPU入手。通过应用实践再适当裁剪通用CPU比从专用CPU开始不断扩充更合理。虽然国内对低端微控制器芯片仍有一定需求,但从海关统计数字来看,不论是CMOS芯片还是其他数字集成电路,大多数进口芯片是0.25微米以下工艺生产的芯片。是否在落后工艺下生产量小面窄的嵌入式芯片应由企业自己判断决定,国爱不能采取只要是嵌入式芯片就支持的短视政策。
龙芯一号CPU研制体现了我们制定的发展战略,一个多月来十多种应用轻松移植,表明龙芯CPU既是一种较通用嵌入式芯片(功耗小于0.5w)可用于网卡网关、网络终端计算机(NC)等,同时也是高安全性的服务器芯片,可用于网络服务等。明年一季度,基于龙芯一号的SoC芯片将问世,更适合于做NC和网络设备。
剩下的一个问题是我们究竟做不做与Intel兼容并与之竞争的通用CPU芯片。我们的意见是暂时不做。我国舆论界有一种误导使许多老百姓认为“信息技术主要是PC机,PC的核心技术是P3、P4芯片,芯片的高技术是高主频。”实际上PC用的CPU只占微处理器数量的1%左右,但销售收入有200多亿美元,占全球1500多亿美元IC总收入的15%左右(有机构统计,PC用IC占IC总市场的30-40%)。PC芯片的高收入高利润是多年来Wintel联盟的“功绩”,我们暂时不具备实力与Intel比高低。在未来的发展中,各种Intelnet Appliance(所谓IA产品)增长势头明显大于PC,据IDC公司预测2002年IA产品销售数量将达到1.8亿台,超过PC机销售数量。PC机本身也在变化,用户未必希望PC机主频3G、4G这样升上去。因此我们不能固守“通用CPU=P4”这种思维模式。
三、兼容与另起炉灶
龙芯一号启动时,最重要的决定是要不要与国外主流系统兼容,如果要兼容与哪一家兼容?有人认为选择芯片指令系统是一个政治问题,是受不受制于人的问题。我们则认为,在全球经济一体化的形势下,我们要抛弃所谓“完全自主知识产权”的旧观念,世界上几乎所有芯片公司的产品都是“你中有我,我中有你”,连Intel公司都买别人的IP,为什么刚刚起步的中国IC设计产业就必须全用自己的IP?兼容不兼容完全是市场行为,是我们根据推广龙芯CPU的市场需要决定的。应当说作出必须兼容的决定在很大程度上受到曙光服务器成长过程的启发。曙光一号服务器和曙光1000大规模并行机开始走的是一条不完全兼容的路,我们在AT&T Unix和Mach OS基础上分别研制了自己的并行操作系统。尽管符合POSIX标准,有自主知识产权,可以得国家最高的科技成果奖励,但数据库厂商和第三方应用软件厂商不愿意花功夫为曙光机移植软件,曙光机只能卖给自己有源程序的用户,市场上成千上万种应用软件用不上。冷酷的事实教育了我们,为了充分发挥后发优势,利用已有的巨大软件资源,与主流系统完全兼容是迅速扩大市场份额的良策。我们相信推广龙芯CPU将会遇到与曙光服务器同样的问题,因此毫不犹豫地选择了兼容道路。
经过对X86、PowerPC、MIPS、SPARC等多种指令系统的仔细分析,我们最终选择了MIPS指令系统、在这一选择中,唐志敏研究员起了关键作用。唐志敏研究员是计算所年轻的博士导师、863计划计算机主题专家组成员,也是龙芯CPU课题负责人。他在体系结构方面造诣颇深,对各种RISC指令系统做过深入分析后,认为选用比Alpha功能强又比PowerPC简单的MIPS指令系统具有较好的可行性。选择MIPS指令系统的更重要的原因是出于市场考虑。MIPS公司不同于Intel、SUN和IBM,它不是IDM公司,自己并不生产销售芯片,而是以卖License和服务为营业范围,它不但不像Intel公司那样反对别人做兼容芯片,而是支持其他厂家做MIPS兼容芯片.世界上许多大公司,如生产路由器的CISCO、生产游戏机的SONY等都采用MIPS指令系统。MIPS芯片不仅用于SGI公司的高档工作站与服务器,而且是主流的高档嵌入式CPU,每年MIPS芯片销售量超过7000万片。市面上已有大量MIPS应用软件,龙芯一号流片成功后许多整机厂商一小时内就装上了应用软件,充分证明我们的决策是正确的。
与兼容策略相关还有一件大家十分关心的事,那就是如何避开专利。国内有些专家认为芯片设计专利是我们难以逾越的障碍,我们有些决策者也对此忧心忡忡。专利的确是我们必须高度重视的技术障碍,但也不能把专利看成拦路虎,长他人志气,灭自己威风。我们在研制龙芯一号过程中查阅了所有有关专利,我们发现指令系统本身不是专利,而且几乎没有一项概念性的专利,例如Cache技术、多发射技术等,所有专利几乎都与具体实现技术有关。我们设计CPU是先通过译码器变成自己定义的统一中间代码,所有的功能部件执行中间代码,与原来的指令系统无关。所以对我们而言,回避专利与采用什么指令系统没有关系。我们在设计中没有侵犯任何专利而且自己申请了十余项发明专利。今后做全定制设计,除了我们自己设计一些关键的宏单元外,一定会购买一些IP使用权,包括一些专利使用权。在IC设计中这是十分正常的。今后我们自己的专利与IP越来越多,通过Cross Licencing共享互用IP和专利是必由之路。与计算机产生一样,IC产业的横向分工越来越明显,IP(包括专利)将是IC设计厂商的主要产品,我们要学会如何买卖IP不要谈“专利”色变,作茧自缚。
还有一种看法是认为采用别人的指令系统说明没本事,还不掌握CPU核心技术,不如另起炉灶自己定义指令系统的单位水平高。实际上学过计算机原理与系统结构课的人都知道,自己定义一套指令系统并不是难事。40多年前,计算所就开始自己定义指令系统,几十年来计算所研制的十几种计算机都是自己定义指令系统。一个好的指令系统要经过大量应用反复考验修改才能成为市场接受的主流系统。如同大家用C、VB、JAVA编程序,没有人强调非要自己定义一种语言编程一样,研制CPU的水平并不在于是不是自己定义指令系统,谁能占领市场才是真本事。
四、IC设计的科研与产业化
龙芯一号研制成功后,马上面临研制更高性能的龙芯2号与尽快将龙芯一号产业化的矛盾,这与当时研制曙光机的情形十分类似。我们决不能只以不断研制出新的CPU为目标,置产业化于不顾。在科研人员中要树立一个观念,龙芯一号卖不出去,研制出龙芯2号也没有多大意义。计算所的科研人员已做了计划,全力配合神州龙芯公司打开市场,龙芯1.1、龙芯1.2两款SoC产品的优先级放在龙芯2前面。神州龙芯公司也在大力开拓龙芯CPU的应用,争取较多的定单。我们的体会是在研制龙芯CPU时,为国分忧的激情是一股强大的动力,胡伟武研究员几篇关于龙芯研制过程的文章催人泪下,表明年轻一代科研人员像两弹一星研制人员一样有着高尚的爱国情操和顽强的拼搏精神,计算所有这样一批又红又专的人才才能做出让人眼睛一亮的成果。如果我们一味等待国外的高手回来才开始研制,恐怕今天龙芯CPU还只存在于希望之中。另一方面,根据我们推广曙光机的经验,我们不能把产业化的希望寄托在用户的爱国热情中。CPU虽然是涉及国家安全的特殊产品,但卖产品就是卖产品,不能加上过多政治色彩,必须靠产品本身的可靠性、高性价比和出色的服务取得用户的信任。从某种意义讲,推广龙芯CPU是比研制CPU更艰苦的一场战斗。较通用的嵌入式CPU的用途很广泛,不一定非常性能超过P4才能卖得动,266M 0.5W功耗的MIPS兼容CPU芯片一定有它对应的广阔市场。国家在开始推广国产CPU时做一些扶植是必要的,但关键在自己努力。我们有信心比推广曙光机做得更好,让国产CPU尽快在市场上占有一席之地。